Discrete Lagrangian Dynamics on Matched Pair Lie Groups
نویسندگان
چکیده
Sürekli olmayan dinamiğin Lagrange formülasyonu eşlenmiş Lie gruplar üzerinde çalışılmıştır. Sonuç olarak, karşılıklı etkileşim altındaki kesikli iki sistemin dinamiğini tarif eden fark denklemleri elde edilmiştir. Özel olarak da, bir grubunun teğet grubu üzerindeki ifade Elde edilen sonuçlar, Heisenberg kopyası üzerine bina özelinde çalışılmış, ve matris formunda yazılmıştır.
منابع مشابه
Symmetry Reduction of Discrete Lagrangian Mechanics on Lie Groups
For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian l we define a Poisson structure via the pull-back of the Lie-Poisson structure on the dual of the Lie algebra g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form...
متن کاملDiscrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...
متن کاملLagrangian Submanifolds and Dynamics on Lie Affgebroids
We introduce the notion of a symplectic Lie affgebroid and their Lagrangian submanifolds in order to describe time-dependent Mechanics in terms of this type of structures. Analogous to the autonomous case, we construct the Tulczyjew’s triple associated with a Lie affgebroid and a Hamiltonian section. We describe our theory with several examples.
متن کاملOn a Matched Pair of Lie Groups for the -poincar E in 2-dimensions
We present the construction of the-Poincar e in two dimensions from matched pairs of Lie groups: SO(1; 1) and a-deformed group of translations.
متن کاملDiscrete Nonholonomic LL Systems on Lie Groups
This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of advances in engineering and pure sciences
سال: 2021
ISSN: ['2636-8277']
DOI: https://doi.org/10.7240/jeps.784138